Count Of Range Sum Problem
Description
LeetCode Problem 327.
Given an integer array nums and two integers lower and upper, return the number of range sums that lie in [lower, upper] inclusive.
Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j inclusive, where i <= j.
Example 1:
1
2
3
Input: nums = [-2,5,-1], lower = -2, upper = 2
Output: 3
Explanation: The three ranges are: [0,0], [2,2], and [0,2] and their respective sums are: -2, -1, 2.
Example 2:
1
2
Input: nums = [0], lower = 0, upper = 0
Output: 1
Constraints:
- 1 <= nums.length <= 10^5
- -2^31 <= nums[i] <= 2^31 - 1
- -10^5 <= lower <= upper <= 10^5
- The answer is guaranteed to fit in a 32-bit integer.
Sample C++ Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
private:
int mergeSort(vector<long long>&sum, int left, int right, int lower, int upper) {
int mid, i, res, j, k;
if(left>right)
return 0;
if(left==right)
return ( (sum[left]>=lower) && (sum[left]<=upper) )?1:0;
else {
vector<long long> temp(right-left+1,0);
mid = (left+right)/2;
// merge sort two halfs first, be careful about how to divide [left, mid] and [mid+1, right]
res = mergeSort(sum, left,mid, lower, upper) + mergeSort(sum, mid+1,right, lower, upper);
for(i=left, j=k=mid+1; i<=mid; ++i) {
// count the valid ranges [i,j], where i is in the first half and j is in the second half
while(j<=right && sum[j]-sum[i]<lower) ++j;
while(k<=right && sum[k]-sum[i]<=upper) ++k;
res +=k-j;
}
for(i=k=left, j=mid+1; k<=right; ++k)
//merge the sorted two halfs
temp[k-left] = (i<=mid) && (j>right || sum[i]<sum[j])?sum[i++]:sum[j++];
for(k=left; k<=right; ++k)
// copy the sorted results back to sum
sum[k] = temp[k-left];
return res;
}
}
public:
int countRangeSum(vector<int>& nums, int lower, int upper) {
int len = nums.size(), i;
vector<long long> sum(len+1, 0);
for(i=1; i<=len; ++i)
sum[i] = sum[i-1]+nums[i-1];
return mergeSort(sum, 1, len, lower, upper);
}
};