Minimum Path Sum Problem
Description
LeetCode Problem 64.
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
1
2
3
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
1
2
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 200
- 0 <= grid[i][j] <= 100
Sample C++ Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if (grid.size() == 0) return 0;
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i ++) {
for (int j = 0; j < n; j ++) {
if (i == 0 && j == 0) {
dp[i][j] = grid[i][j];
} else if (i == 0) {
dp[i][j] = dp[i][j-1] + grid[i][j];
} else if (j == 0) {
dp[i][j] = dp[i-1][j] + grid[i][j];
} else {
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
}
}
}
return dp[m-1][n-1];
}
};