Online Election Problem


Description

LeetCode Problem 911.

You are given two integer arrays persons and times. In an election, the i^th vote was cast for persons[i] at time times[i].

For each query at a time t, find the person that was leading the election at time t. Votes cast at time t will count towards our query. In the case of a tie, the most recent vote (among tied candidates) wins.

Implement the TopVotedCandidate class:

  • TopVotedCandidate(int[] persons, int[] times) Initializes the object with the persons and times arrays.
  • int q(int t) Returns the number of the person that was leading the election at time t according to the mentioned rules.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
Input
["TopVotedCandidate", "q", "q", "q", "q", "q", "q"]
[[[0, 1, 1, 0, 0, 1, 0], [0, 5, 10, 15, 20, 25, 30]], [3], [12], [25], [15], [24], [8]]
Output
[null, 0, 1, 1, 0, 0, 1]
Explanation
TopVotedCandidate topVotedCandidate = new TopVotedCandidate([0, 1, 1, 0, 0, 1, 0], [0, 5, 10, 15, 20, 25, 30]);
topVotedCandidate.q(3); // return 0, At time 3, the votes are [0], and 0 is leading.
topVotedCandidate.q(12); // return 1, At time 12, the votes are [0,1,1], and 1 is leading.
topVotedCandidate.q(25); // return 1, At time 25, the votes are [0,1,1,0,0,1], and 1 is leading (as ties go to the most recent vote.)
topVotedCandidate.q(15); // return 0
topVotedCandidate.q(24); // return 0
topVotedCandidate.q(8); // return 1

Constraints:

  • 1 <= persons.length <= 5000
  • times.length == persons.length
  • 0 <= persons[i] < persons.length
  • 0 <= times[i] <= 10^9
  • times is sorted in a strictly increasing order.
  • times[0] <= t <= 10^9
  • At most 10^4 calls will be made to q.


Sample C++ Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class TopVotedCandidate {
    vector<int> times, lead; 
public:
    TopVotedCandidate(vector<int>& persons, vector<int>& times) : times(times) {
        unordered_map<int, int> freq; 
        int pp = 0; 
        for (auto& p : persons) {
            ++freq[p]; 
            if (freq[p] >= freq[pp]) pp = p; 
            lead.push_back(pp);
        }
    }
    
    int q(int t) {
        int k = upper_bound(times.begin(), times.end(), t) - times.begin();
        return lead[k-1]; 
    }
};
/**
 * Your TopVotedCandidate object will be instantiated and called as such:
 * TopVotedCandidate* obj = new TopVotedCandidate(persons, times);
 * int param_1 = obj->q(t);
 */




Related Posts

Time Based Key-Value Store Problem

LeetCode 981. Design a time-based key-value data structure that can...

Rle Iterator Problem

LeetCode 900. We can use run-length encoding (i.e., RLE) to...

Online Stock Span Problem

LeetCode 901. Design an algorithm that collects daily price quotes...

Online Election Problem

LeetCode 911. You are given two integer arrays persons and...

Number Of Recent Calls Problem

LeetCode 933. You have a RecentCounter class which counts the...

Maximum Frequency Stack Problem

LeetCode 895. Design a stack-like data structure to push elements...